Serveur d'exploration sur l'Indium

Attention, ce site est en cours de développement !
Attention, site généré par des moyens informatiques à partir de corpus bruts.
Les informations ne sont donc pas validées.

Infrared photoluminescence of high In-content InN/InGaN multiple-quantum-wells : Indium Nitride and Related Alloys

Identifieur interne : 001954 ( Main/Repository ); précédent : 001953; suivant : 001955

Infrared photoluminescence of high In-content InN/InGaN multiple-quantum-wells : Indium Nitride and Related Alloys

Auteurs : RBID : Pascal:12-0043491

Descripteurs français

English descriptors

Abstract

We report on the thermal evolution of the photoluminescence (PL) from high In-content InN/In0.9Ga0.1N multiple-quantum wells (MQWs) synthesized by plasma-assisted molecular-beam epitaxy on GaN-on-sapphire templates. The structural quality and the well/barrier thickness uniformity in the MQW structure are assessed by X-ray diffraction and transmission electron microscopy measurements. PL results are compared with the luminescence from a 1-μm-thick InN reference sample. In both cases, the dominant low-temperature (5 K) PL emission peaks at ∼0.73 eV with a full width at half maximum of ∼86 meV. The InN layer displays an S-shape evolution of the emission peak energy with temperature, explained in terms of carrier localization. A carrier localization energy of ∼\12 meV is estimated for the InN layer, in good agreement with the expected carrier concentration. In the case of the MQW structure, an enhancement of the carrier localization associated to the piezoelectric field results in an improved thermal stability of the PL intensity, reaching an internal quantum efficiency of ∼ 16%.

Links toward previous steps (curation, corpus...)


Links to Exploration step

Pascal:12-0043491

Le document en format XML

<record>
<TEI>
<teiHeader>
<fileDesc>
<titleStmt>
<title xml:lang="en" level="a">Infrared photoluminescence of high In-content InN/InGaN multiple-quantum-wells : Indium Nitride and Related Alloys</title>
<author>
<name sortKey="Valdueza Felip, Sirona" uniqKey="Valdueza Felip S">Sirona Valdueza-Felip</name>
<affiliation wicri:level="2">
<inist:fA14 i1="01">
<s1>Electronics Department, University of Alcalá, Madrid-Barcelona Road, km 33.6</s1>
<s2>28871 Alcala de Henares</s2>
<s3>ESP</s3>
<sZ>1 aut.</sZ>
<sZ>3 aut.</sZ>
<sZ>8 aut.</sZ>
</inist:fA14>
<country>Espagne</country>
<placeName>
<region nuts="2" type="communauté">Communauté de Madrid</region>
</placeName>
</affiliation>
</author>
<author>
<name sortKey="Rigutti, Lorenzo" uniqKey="Rigutti L">Lorenzo Rigutti</name>
<affiliation wicri:level="3">
<inist:fA14 i1="02">
<s1>Institut d'Electronique Fondamentale, University of Paris Sud XI, UMR 8622 CNRS</s1>
<s2>91405 Orsay</s2>
<s3>FRA</s3>
<sZ>2 aut.</sZ>
<sZ>7 aut.</sZ>
</inist:fA14>
<country>France</country>
<placeName>
<region type="region" nuts="2">Île-de-France</region>
<settlement type="city">Orsay</settlement>
</placeName>
</affiliation>
</author>
<author>
<name sortKey="Naranjo, Fernando B" uniqKey="Naranjo F">Fernando B. Naranjo</name>
<affiliation wicri:level="2">
<inist:fA14 i1="01">
<s1>Electronics Department, University of Alcalá, Madrid-Barcelona Road, km 33.6</s1>
<s2>28871 Alcala de Henares</s2>
<s3>ESP</s3>
<sZ>1 aut.</sZ>
<sZ>3 aut.</sZ>
<sZ>8 aut.</sZ>
</inist:fA14>
<country>Espagne</country>
<placeName>
<region nuts="2" type="communauté">Communauté de Madrid</region>
</placeName>
</affiliation>
</author>
<author>
<name sortKey="Lacroix, Bertrand" uniqKey="Lacroix B">Bertrand Lacroix</name>
<affiliation wicri:level="3">
<inist:fA14 i1="03">
<s1>Centre de Recherche sur les Ions les Matériaux et la Photonique (CIMAP), UMR 6252, CNRS, ENSICAEN, CEA, UCBN, 6 Boulevard Marechal Juin</s1>
<s2>14050 Caen</s2>
<s3>FRA</s3>
<sZ>4 aut.</sZ>
<sZ>6 aut.</sZ>
</inist:fA14>
<country>France</country>
<placeName>
<region type="region" nuts="2">Basse-Normandie</region>
<settlement type="city">Caen</settlement>
</placeName>
</affiliation>
</author>
<author>
<name sortKey="Fernandez, Susana" uniqKey="Fernandez S">Susana Fernandez</name>
<affiliation wicri:level="2">
<inist:fA14 i1="04">
<s1>Departamento de Energias Renovables, Energía Solar Fotovoltaica, CIEMAT, Avda. Complutense 22</s1>
<s2>28040 Madrid</s2>
<s3>ESP</s3>
<sZ>5 aut.</sZ>
</inist:fA14>
<country>Espagne</country>
<placeName>
<region nuts="2" type="communauté">Communauté de Madrid</region>
</placeName>
</affiliation>
</author>
<author>
<name sortKey="Ruterana, Pierre" uniqKey="Ruterana P">Pierre Ruterana</name>
<affiliation wicri:level="3">
<inist:fA14 i1="03">
<s1>Centre de Recherche sur les Ions les Matériaux et la Photonique (CIMAP), UMR 6252, CNRS, ENSICAEN, CEA, UCBN, 6 Boulevard Marechal Juin</s1>
<s2>14050 Caen</s2>
<s3>FRA</s3>
<sZ>4 aut.</sZ>
<sZ>6 aut.</sZ>
</inist:fA14>
<country>France</country>
<placeName>
<region type="region" nuts="2">Basse-Normandie</region>
<settlement type="city">Caen</settlement>
</placeName>
</affiliation>
</author>
<author>
<name sortKey="Julien, Francois H" uniqKey="Julien F">François H. Julien</name>
<affiliation wicri:level="3">
<inist:fA14 i1="02">
<s1>Institut d'Electronique Fondamentale, University of Paris Sud XI, UMR 8622 CNRS</s1>
<s2>91405 Orsay</s2>
<s3>FRA</s3>
<sZ>2 aut.</sZ>
<sZ>7 aut.</sZ>
</inist:fA14>
<country>France</country>
<placeName>
<region type="region" nuts="2">Île-de-France</region>
<settlement type="city">Orsay</settlement>
</placeName>
</affiliation>
</author>
<author>
<name sortKey="Gonzalez Herraez, Miguel" uniqKey="Gonzalez Herraez M">Miguel Gonzalez-Herraez</name>
<affiliation wicri:level="2">
<inist:fA14 i1="01">
<s1>Electronics Department, University of Alcalá, Madrid-Barcelona Road, km 33.6</s1>
<s2>28871 Alcala de Henares</s2>
<s3>ESP</s3>
<sZ>1 aut.</sZ>
<sZ>3 aut.</sZ>
<sZ>8 aut.</sZ>
</inist:fA14>
<country>Espagne</country>
<placeName>
<region nuts="2" type="communauté">Communauté de Madrid</region>
</placeName>
</affiliation>
</author>
<author>
<name sortKey="Monroy, Eva" uniqKey="Monroy E">Eva Monroy</name>
<affiliation wicri:level="3">
<inist:fA14 i1="05">
<s1>CEA Grenoble, INAC/SP2M, 25 Rue des Martyrs</s1>
<s2>38042 Grenoble</s2>
<s3>FRA</s3>
<sZ>9 aut.</sZ>
</inist:fA14>
<country>France</country>
<placeName>
<region type="region" nuts="2">Rhône-Alpes</region>
<settlement type="city">Grenoble</settlement>
</placeName>
</affiliation>
</author>
</titleStmt>
<publicationStmt>
<idno type="inist">12-0043491</idno>
<date when="2012">2012</date>
<idno type="stanalyst">PASCAL 12-0043491 INIST</idno>
<idno type="RBID">Pascal:12-0043491</idno>
<idno type="wicri:Area/Main/Corpus">002395</idno>
<idno type="wicri:Area/Main/Repository">001954</idno>
</publicationStmt>
<seriesStmt>
<idno type="ISSN">1862-6300</idno>
<title level="j" type="abbreviated">Phys. status solidi, A Appl. mater. sci. : (Print)</title>
<title level="j" type="main">Physica status solidi. A, Applications and materials science : (Print)</title>
</seriesStmt>
</fileDesc>
<profileDesc>
<textClass>
<keywords scheme="KwdEn" xml:lang="en">
<term>Carrier density</term>
<term>Gallium Indium Nitrides Mixed</term>
<term>Indium nitride</term>
<term>Localized states</term>
<term>Molecular beam epitaxy</term>
<term>Multiple quantum well</term>
<term>Photoluminescence</term>
<term>Quantum yield</term>
<term>Template method</term>
<term>Thickness</term>
<term>Transmission electron microscopy</term>
<term>XRD</term>
</keywords>
<keywords scheme="Pascal" xml:lang="fr">
<term>Photoluminescence</term>
<term>Epitaxie jet moléculaire</term>
<term>Epaisseur</term>
<term>Diffraction RX</term>
<term>Microscopie électronique transmission</term>
<term>Etat localisé</term>
<term>Densité porteur charge</term>
<term>Rendement quantique</term>
<term>Gallium Indium Nitrure Mixte</term>
<term>Nitrure d'indium</term>
<term>Puits quantique multiple</term>
<term>InN</term>
<term>InGaN</term>
<term>Méthode template</term>
</keywords>
</textClass>
</profileDesc>
</teiHeader>
<front>
<div type="abstract" xml:lang="en">We report on the thermal evolution of the photoluminescence (PL) from high In-content InN/In0.9Ga0.1N multiple-quantum wells (MQWs) synthesized by plasma-assisted molecular-beam epitaxy on GaN-on-sapphire templates. The structural quality and the well/barrier thickness uniformity in the MQW structure are assessed by X-ray diffraction and transmission electron microscopy measurements. PL results are compared with the luminescence from a 1-μm-thick InN reference sample. In both cases, the dominant low-temperature (5 K) PL emission peaks at ∼0.73 eV with a full width at half maximum of ∼86 meV. The InN layer displays an S-shape evolution of the emission peak energy with temperature, explained in terms of carrier localization. A carrier localization energy of ∼\12 meV is estimated for the InN layer, in good agreement with the expected carrier concentration. In the case of the MQW structure, an enhancement of the carrier localization associated to the piezoelectric field results in an improved thermal stability of the PL intensity, reaching an internal quantum efficiency of ∼ 16%.</div>
</front>
</TEI>
<inist>
<standard h6="B">
<pA>
<fA01 i1="01" i2="1">
<s0>1862-6300</s0>
</fA01>
<fA03 i2="1">
<s0>Phys. status solidi, A Appl. mater. sci. : (Print)</s0>
</fA03>
<fA05>
<s2>209</s2>
</fA05>
<fA06>
<s2>1</s2>
</fA06>
<fA08 i1="01" i2="1" l="ENG">
<s1>Infrared photoluminescence of high In-content InN/InGaN multiple-quantum-wells : Indium Nitride and Related Alloys</s1>
</fA08>
<fA11 i1="01" i2="1">
<s1>VALDUEZA-FELIP (Sirona)</s1>
</fA11>
<fA11 i1="02" i2="1">
<s1>RIGUTTI (Lorenzo)</s1>
</fA11>
<fA11 i1="03" i2="1">
<s1>NARANJO (Fernando B.)</s1>
</fA11>
<fA11 i1="04" i2="1">
<s1>LACROIX (Bertrand)</s1>
</fA11>
<fA11 i1="05" i2="1">
<s1>FERNANDEZ (Susana)</s1>
</fA11>
<fA11 i1="06" i2="1">
<s1>RUTERANA (Pierre)</s1>
</fA11>
<fA11 i1="07" i2="1">
<s1>JULIEN (François H.)</s1>
</fA11>
<fA11 i1="08" i2="1">
<s1>GONZALEZ-HERRAEZ (Miguel)</s1>
</fA11>
<fA11 i1="09" i2="1">
<s1>MONROY (Eva)</s1>
</fA11>
<fA14 i1="01">
<s1>Electronics Department, University of Alcalá, Madrid-Barcelona Road, km 33.6</s1>
<s2>28871 Alcala de Henares</s2>
<s3>ESP</s3>
<sZ>1 aut.</sZ>
<sZ>3 aut.</sZ>
<sZ>8 aut.</sZ>
</fA14>
<fA14 i1="02">
<s1>Institut d'Electronique Fondamentale, University of Paris Sud XI, UMR 8622 CNRS</s1>
<s2>91405 Orsay</s2>
<s3>FRA</s3>
<sZ>2 aut.</sZ>
<sZ>7 aut.</sZ>
</fA14>
<fA14 i1="03">
<s1>Centre de Recherche sur les Ions les Matériaux et la Photonique (CIMAP), UMR 6252, CNRS, ENSICAEN, CEA, UCBN, 6 Boulevard Marechal Juin</s1>
<s2>14050 Caen</s2>
<s3>FRA</s3>
<sZ>4 aut.</sZ>
<sZ>6 aut.</sZ>
</fA14>
<fA14 i1="04">
<s1>Departamento de Energias Renovables, Energía Solar Fotovoltaica, CIEMAT, Avda. Complutense 22</s1>
<s2>28040 Madrid</s2>
<s3>ESP</s3>
<sZ>5 aut.</sZ>
</fA14>
<fA14 i1="05">
<s1>CEA Grenoble, INAC/SP2M, 25 Rue des Martyrs</s1>
<s2>38042 Grenoble</s2>
<s3>FRA</s3>
<sZ>9 aut.</sZ>
</fA14>
<fA20>
<s1>17-20</s1>
</fA20>
<fA21>
<s1>2012</s1>
</fA21>
<fA23 i1="01">
<s0>ENG</s0>
</fA23>
<fA43 i1="01">
<s1>INIST</s1>
<s2>10183A</s2>
<s5>354000505973280020</s5>
</fA43>
<fA44>
<s0>0000</s0>
<s1>© 2012 INIST-CNRS. All rights reserved.</s1>
</fA44>
<fA45>
<s0>25 ref.</s0>
</fA45>
<fA47 i1="01" i2="1">
<s0>12-0043491</s0>
</fA47>
<fA60>
<s1>P</s1>
</fA60>
<fA61>
<s0>A</s0>
</fA61>
<fA64 i1="01" i2="1">
<s0>Physica status solidi. A, Applications and materials science : (Print)</s0>
</fA64>
<fA66 i1="01">
<s0>DEU</s0>
</fA66>
<fC01 i1="01" l="ENG">
<s0>We report on the thermal evolution of the photoluminescence (PL) from high In-content InN/In0.9Ga0.1N multiple-quantum wells (MQWs) synthesized by plasma-assisted molecular-beam epitaxy on GaN-on-sapphire templates. The structural quality and the well/barrier thickness uniformity in the MQW structure are assessed by X-ray diffraction and transmission electron microscopy measurements. PL results are compared with the luminescence from a 1-μm-thick InN reference sample. In both cases, the dominant low-temperature (5 K) PL emission peaks at ∼0.73 eV with a full width at half maximum of ∼86 meV. The InN layer displays an S-shape evolution of the emission peak energy with temperature, explained in terms of carrier localization. A carrier localization energy of ∼\12 meV is estimated for the InN layer, in good agreement with the expected carrier concentration. In the case of the MQW structure, an enhancement of the carrier localization associated to the piezoelectric field results in an improved thermal stability of the PL intensity, reaching an internal quantum efficiency of ∼ 16%.</s0>
</fC01>
<fC02 i1="01" i2="3">
<s0>001B70H67D</s0>
</fC02>
<fC03 i1="01" i2="3" l="FRE">
<s0>Photoluminescence</s0>
<s5>02</s5>
</fC03>
<fC03 i1="01" i2="3" l="ENG">
<s0>Photoluminescence</s0>
<s5>02</s5>
</fC03>
<fC03 i1="02" i2="3" l="FRE">
<s0>Epitaxie jet moléculaire</s0>
<s5>03</s5>
</fC03>
<fC03 i1="02" i2="3" l="ENG">
<s0>Molecular beam epitaxy</s0>
<s5>03</s5>
</fC03>
<fC03 i1="03" i2="3" l="FRE">
<s0>Epaisseur</s0>
<s5>04</s5>
</fC03>
<fC03 i1="03" i2="3" l="ENG">
<s0>Thickness</s0>
<s5>04</s5>
</fC03>
<fC03 i1="04" i2="3" l="FRE">
<s0>Diffraction RX</s0>
<s5>05</s5>
</fC03>
<fC03 i1="04" i2="3" l="ENG">
<s0>XRD</s0>
<s5>05</s5>
</fC03>
<fC03 i1="05" i2="3" l="FRE">
<s0>Microscopie électronique transmission</s0>
<s5>06</s5>
</fC03>
<fC03 i1="05" i2="3" l="ENG">
<s0>Transmission electron microscopy</s0>
<s5>06</s5>
</fC03>
<fC03 i1="06" i2="3" l="FRE">
<s0>Etat localisé</s0>
<s5>08</s5>
</fC03>
<fC03 i1="06" i2="3" l="ENG">
<s0>Localized states</s0>
<s5>08</s5>
</fC03>
<fC03 i1="07" i2="3" l="FRE">
<s0>Densité porteur charge</s0>
<s5>09</s5>
</fC03>
<fC03 i1="07" i2="3" l="ENG">
<s0>Carrier density</s0>
<s5>09</s5>
</fC03>
<fC03 i1="08" i2="3" l="FRE">
<s0>Rendement quantique</s0>
<s5>11</s5>
</fC03>
<fC03 i1="08" i2="3" l="ENG">
<s0>Quantum yield</s0>
<s5>11</s5>
</fC03>
<fC03 i1="09" i2="X" l="FRE">
<s0>Gallium Indium Nitrure Mixte</s0>
<s2>NC</s2>
<s2>NA</s2>
<s5>12</s5>
</fC03>
<fC03 i1="09" i2="X" l="ENG">
<s0>Gallium Indium Nitrides Mixed</s0>
<s2>NC</s2>
<s2>NA</s2>
<s5>12</s5>
</fC03>
<fC03 i1="09" i2="X" l="SPA">
<s0>Mixto</s0>
<s2>NC</s2>
<s2>NA</s2>
<s5>12</s5>
</fC03>
<fC03 i1="10" i2="X" l="FRE">
<s0>Nitrure d'indium</s0>
<s5>15</s5>
</fC03>
<fC03 i1="10" i2="X" l="ENG">
<s0>Indium nitride</s0>
<s5>15</s5>
</fC03>
<fC03 i1="10" i2="X" l="SPA">
<s0>Indio nitruro</s0>
<s5>15</s5>
</fC03>
<fC03 i1="11" i2="X" l="FRE">
<s0>Puits quantique multiple</s0>
<s5>17</s5>
</fC03>
<fC03 i1="11" i2="X" l="ENG">
<s0>Multiple quantum well</s0>
<s5>17</s5>
</fC03>
<fC03 i1="11" i2="X" l="SPA">
<s0>Pozo cuántico múltiple</s0>
<s5>17</s5>
</fC03>
<fC03 i1="12" i2="3" l="FRE">
<s0>InN</s0>
<s4>INC</s4>
<s5>52</s5>
</fC03>
<fC03 i1="13" i2="3" l="FRE">
<s0>InGaN</s0>
<s4>INC</s4>
<s5>53</s5>
</fC03>
<fC03 i1="14" i2="3" l="FRE">
<s0>Méthode template</s0>
<s4>CD</s4>
<s5>96</s5>
</fC03>
<fC03 i1="14" i2="3" l="ENG">
<s0>Template method</s0>
<s4>CD</s4>
<s5>96</s5>
</fC03>
<fN21>
<s1>023</s1>
</fN21>
</pA>
</standard>
</inist>
</record>

Pour manipuler ce document sous Unix (Dilib)

EXPLOR_STEP=IndiumV3/Data/Main/Repository
HfdSelect -h $EXPLOR_STEP/biblio.hfd -nk 001954 | SxmlIndent | more

Ou

HfdSelect -h $EXPLOR_AREA/Data/Main/Repository/biblio.hfd -nk 001954 | SxmlIndent | more

Pour mettre un lien sur cette page dans le réseau Wicri

{{Explor lien
   |wiki=   *** parameter Area/wikiCode missing *** 
   |area=    IndiumV3
   |flux=    Main
   |étape=   Repository
   |type=    RBID
   |clé=     Pascal:12-0043491
   |texte=   Infrared photoluminescence of high In-content InN/InGaN multiple-quantum-wells : Indium Nitride and Related Alloys
}}

Wicri

This area was generated with Dilib version V0.5.77.
Data generation: Mon Jun 9 10:27:54 2014. Site generation: Thu Mar 7 16:19:59 2024